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Neuroimaging techniques are necessary for the evaluation of stroke, one of the leading

causes of death and neurological impairment in developed countries. The multiplicity of

techniques available has increased the complexity of decisionmaking for physicians.We

performed a comprehensive review of the literature in English for the period 1965–2005

and critically assessed the relevant publications. Themembers of the panel reviewed and

corrected an initial draft, until a consensus was reached on recommendations stratified

according to the European Federation of Neurological Societies (EFNS) criteria. Non-

contrast computed tomography (CT) scan is the established imaging procedure for the

initial evaluation of stroke patients. However, magnetic resonance imaging (MRI) has a

higher sensitivity than CT for the demonstration of infarcted or ischemic areas and

depicts well acute and chronic intracerebral hemorrhage. Perfusion and diffusion MRI

together with MR angiography (MRA) are very helpful for the acute evaluation of

patients with ischemic stroke. MRI and MRA are the recommended techniques for

screening cerebral aneurysms and for the diagnosis of cerebral venous thrombosis and

arterial dissection. For the non-invasive study of extracranial vessels, MRA is less

portable and more expensive than ultrasonography but it has higher sensitivity and

specificity for carotid stenosis. Transcranial Doppler is very useful for monitoring

arterial reperfusion after thrombolysis, for the diagnosis of intracranial stenosis and of

right-to-left shunts, and for monitoring vasospasm after subarachnoid hemorrhage.

Currently, single photon emission computed tomography and positron emission

tomography have a more limited role in the evaluation of the acute stroke patient.

Objectives

The objective of the Task Force is to develop and

publish an EFNS Guideline on the use of neuroimaging

for the management of acute stroke. The Guideline is

based on published scientific evidence as well as the

consensus of experts. The resulting report is intended to

provide updated and evidence-based recommendations

regarding the use of diagnostic neuroimaging tech-

niques, including cerebrovascular ultrasonography

(US), in patients with stroke and thus guide neurolo-

gists, other healthcare professionals and healthcare

providers in clinical decision making and in the elab-

oration of clinical protocols. It is not intended to have

legally binding implications in individual situations.

This guideline evaluates neuroimaging in acute

stroke. Neuroimaging is also very important in the

management of cerebrovascular disease in a more

elective setting, for instance for the performance of

angioplasty or the placement of an arterial stent. These

procedures will be covered in future guidelines.

Background

Stroke is the second cause of death and one of the

major determining factors of hospital admission and
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permanent disability [1]. In the developed countries, the

proportion of the population over the age of 65 years is

growing and this trend is likely to increase stroke inci-

dence in the next decades. Major advances in the

understanding of the mechanisms of stroke and its

management have been made thanks to the substantial

progress in neuroimaging techniques. However, the

multiplicity of neuroimaging techniques available for

the evaluation of stroke patients has increased the

complexity of decision making for physicians. Neurol-

ogists, who have been educated to manage acute stroke

patients, should be trained in the use of neuroimaging,

which allows for the development of a pathophysio-

logically oriented treatment.

Successful care of acute stroke patients requires a

rapid and accurate diagnosis because the time window

for treatment is narrow. In the case of intravenous

thrombolysis for ischemic stroke, the treatment is safer

and more effective the earlier it is given [2]. Current

recommendations call for a 3-h time limit for intra-

venous thrombolysis [3] that can be extended to 6 h for

intra-arterial thrombolysis [4]. Thus, the neuroimaging

protocol designed to determine the cause of stroke

should delay treatment as little as possible. Neuroi-

maging can not only separate ischemic from hem-

orrhagic stroke, but also provide information about the

presence of ischemic but still viable and thus salvage-

able tissue (penumbra tissue) and vessel occlusion in the

hyperacute phase of ischemic stroke. Therefore neu-

roimaging is critical for an improved selection of pa-

tients who could be treated with thrombolysis up to the

3-h limit and beyond [5]. Thus, neuroimaging criteria

have been used for patient selection and outcome in the

Desmoteplase in Acute Stroke trial, using thrombolysis

between 3 and 9 h after stroke onset [6]. Determining

stroke type using neuroimaging goes well beyond sep-

arating ischemic from hemorragic stroke. For instance,

the depiction of multiple cortical infarcts may lead to a

fuller work-up for cardiogenic emboli [7]. In arterial

dissection, the characteristic semilunar high-intensity

signal in the vessel wall on magnetic resonance imaging

(MRI) alerts to the presence of this cause of stroke [8].

Search strategy

The Cochrane Library was consulted and no studies

were found regarding the use of neuroimaging tech-

niques in stroke. A comprehensive literature review

using the MEDLINE database has been conducted by

searching for the period 1965–2005. Relevant literature

in English including existing guidelines, meta-analyses,

systematic reviews, randomized controlled trials, and

observational studies and have been critically assessed.

Selected articles have been rated based on the quality of

study design, and clinical practice recommendations

have been developed and stratified to reflect the quality

and the content of the evidence according to EFNS

criteria [9] (Table 1).

Method for reaching consensus

The author panel critically assessed the topic through

analysis of the medical literature. A proposed guideline

with specific recommendations was drafted for circu-

lation to all panel members. Each panelist studied and

commented in writing on each successive guideline

draft, revised to progressively accommodate the panel

consensus. After the approval of the panelists, two

independent experts gave their opinion on the final

version.

Results

Imaging of the brain

The primary objectives of brain imaging in acute stroke

are to exclude a non-vascular lesion as the cause of the

symptoms and to determine whether the stroke is

caused by an ischemic infarction or a hemorrhage. It is

not possible to exclude stroke mimics, such as a neo-

plasm, and distinguish between ischemic and hem-

orrhagic stroke based exclusively on the history and

Table 1 Evidence classification scheme for a diagnostic procedure [9]

Class I: A prospective study in a broad spectrum of persons with the

suspected condition, using a �gold standard� for case definition, where
the test is applied in a blinded evaluation, and enabling the

assessment of appropriate tests of diagnostic accuracy

Class II: A prospective study of a narrow spectrum of persons with

the suspected condition, or a well-designed retrospective study of a

broad spectrum of persons with an established condition (by �gold
standard�) compared with a broad spectrum of controls, where test is

applied in a blinded evaluation, and enabling the assessment of

appropriate tests of diagnostic accuracy

Class III: Evidence provided by a retrospective study where either

persons with the established condition or controls are of a narrow

spectrum, and where test is applied in a blinded evaluation

Class IV: Any design where test is not applied in blinded evaluation

OR evidence provided by expert opinion alone or in descriptive case

series (without controls)

Rating of recommendations

Level A rating (established as useful/predictive or not

useful/predictive) requires at least one convincing class I study or at

least two consistent, convincing class II studies

Level B rating (established as probably useful/predictive or not

useful/predictive) requires at least one convincing class II study or

overwhelming class III evidence

Level C rating (established as possibly useful/predictive or not

useful/predictive)

Good clinical practice point rating (GCPP, supported primarily by

expert opinion
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physical examination [10]. Determining the nature of

the lesion by brain imaging is necessary before starting

any treatment, particularly thrombolysis and anti-

thrombotic drugs (class I, level A).

Computed tomography (CT)

Conventional CT of the head is the examination most

frequently used for the emergent evaluation of patients

with acute stroke because of its wide availability and

usefulness (class II, level B). It has been utilized as a

screening tool in most of the major therapeutic trials

conducted to date [2]. It is useful to distinguish between

ischemic stroke and intracerebral or subarachnoid

hemorrhage (SAH), and can also rule out other con-

ditions that could mimic stroke such as brain tumors.

Signs of early ischemia may be identified as early as 2 h

from stroke onset, although they may appear much

later [11]. Early infarct signs include the hyperdense

middle cerebral artery (MCA) sign [12,13] (indicative of

a thrombus or embolus in the M1 segment of the ves-

sel), the MCA dot sign [14,15] (indicating thrombosis of

M2 or M3 MCA branches), the loss of the gray-white

differentiation in the cortical ribbon [16] or the lenti-

form nucleus [17], and sulcal effacement [18]. The

presence of some of these signs has been associated with

poor outcome [18]. In the European Cooperative Acute

Stroke Study (ECASS) I trial those patients with signs

of early infarction involving more than one-third of the

territory of the MCA had an increased risk of hem-

orrhagic transformation following treatment with

thrombolysis [19]. A secondary analysis of other

thrombolytic trials with a 6-h time window (ECASS II

and Multicentre Acute Stroke Trial – Europe

(MAST-E) demonstrated that the presence of early CT

changes was a risk factor for intracerebral hemorrhage

(ICH) [20,21] and similar results have been observed in

larger series of patients [22]. However, in the National

Institute of Neurological Disease and Stroke (NINDS)

trial and the Australian Streptokinase Trial there was

no relation between intracranial hemorrhage and early

CT changes [23,24], and has been argued that the

poorer outcome in patients with CT changes may

have more to do with delayed treatment than with the

changes themselves, with additional damage of the

potentially salvageable tissue in the larger, CT-visible

infarcts [25]. Because ischemic changes are difficult to

detect for clinicians without an adequate training in

reading CT [26,27], scoring systems have been devel-

oped to quantify early CT changes, like the Alberta

Stroke Programme Early CT Score (ASPECTS). More

extensive early changes using ASPECTS correlate with

high rates of intracranial hemorrhage and poor

outcome at long term, and therefore might improve

identification of ischemic stroke patients who

particularly benefit from thrombolysis and those at risk

of symptomatic hemorrhage [28,29]. However, given

the conflicting evidence, the presence of decreased

attenuation on early CT, even affecting more than one-

third of the MCA territory, cannot be construed to be

an absolute contraindication to the use of thrombolytic

therapy in the first 3 h after stroke (class IV, level

GCPP).

Conventional CT contrast enhancement is not indi-

cated for the acute diagnosis of stroke, and seldom may

be helpful to show the infarcted area in the subacute

stage (2–3 weeks after stroke onset) when there may be

obscuration of the infarction by the �fogging effect�
[30,31] (class IV, level C).

Computed tomography shows acute ICHs larger

than 5 mm in diameter as areas of increased attenu-

ation. Not depicted by CT are petechial hemorrhages

and bleedings in patients with very low hemoglobin

levels [32], because the high density of blood on CT is a

function of hemoglobin concentration. CT demon-

strates the size and topography of the hemorrhage and

gives information about the presence of mass effect,

hydrocephalus, and intraventricular extension of the

bleeding. In addition, it may identify (although not as

well as MRI) possible structural abnormalities (aneu-

rysms, arteriovenous malformations or tumors) that

caused the hemorrhage. The characteristic hyperdensity

of ICH on CT disappears with time, becoming hypo-

dense after approximately 8–10 days [33,34]. For this

reason CT is not a useful technique to distinguish be-

tween old hemorrhage and infarction.

With newer CT helical units, SAH can be detected in

98–100% of patients in the first 12 h from the onset of

symptoms [35,36] and in 93% of patients studied within

the first 24 h [37,38]. CT is the imaging procedure of

choice to diagnose SAH (class I, level A). Some experts

recommend performing the study with thin cuts (3 mm

in thickness) through the base of the brain, because

small collections of blood may be missed with thicker

cuts [39] (class IV, level GCPP). CT cannot identify

SAH in patients with low hemoglobin levels, because

blood may appear isodense, and in those scanned after

3 weeks of the bleeding, when blood has usually been

metabolized [40].

Cerebral venous thrombosis (CVT) is an uncommon

cause of stroke [41,42]. CT can show direct signs of

venous thrombosis and other indirect non-specific

signs, but in about one-third of cases CT is normal

[43,44]. Direct signs on unenhanced CT are the cord

sign, corresponding to thrombosed cortical veins, and

the dense triangle sign, corresponding to a thrombus in

the superior sagital sinus, and, on enhanced CT of the

sagital sinus, the delta sign [45]. Indirect signs such as

local hypodensities caused by edema or infarction,
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hyperdensities secondary to hemorrhagic infarction, or

brain swelling and small ventricles suggest the diagnosis

of CVT. CT venography has emerged as a good pro-

cedure to detect CVT [46] (class III, level C).

Perfusion-CT (PCT) techniques, such as slow-infu-

sion/whole-brain PCT and dynamic PCT, may help

distinguish between reversible and irreversible areas of

ischemia. Slow-infusion PCT is useful to evaluate the

perfusion of the entire brain, but only provides qualit-

ative information related to cerebral blood volume and

therefore cannot be used to differentiate reversible from

non-reversible ischemia [47,48]. Dynamic PCT involves

dynamic acquisition of sequential CT slices during the

intravenous administration of iodinated contrast media

[49,50]. PCT allows the estimation of cerebral blood

flow (CBF), cerebral blood volume (CBV), and mean

transit time (MTT) in a limited volume of brain tissue,

currently 20- to 48-mm in thickness, but faster CT

equipment is becoming available to permit the study of

larger regions of the brain. Areas with prolonged MTT

are hemodynamically compromised. In these areas, the

regions with increased CBV resulting from vasodilata-

tion and collateral recruitment are considered to have

preserved autoregulation and to represent �tissue at

risk,� whereas regions with decreased CBV correspond

to the infarct core [49,51,52]. PCT overestimates brain

hemodynamic values in pixels including large vessels

[53]. PCT can be performed and analyzed in less than

15 min [52]. However there are no studies to date

demonstrating that perfusion CT is useful for the

selection of candidates to thrombolysis. Pregnancy,

diabetes, renal failure, and allergy to contrast material

are relative contraindications to perform a perfusion

brain CT. Perfusion CT is particularly helpful for the

study of stroke patients for whom MRI is contraindi-

cated, such as those with pacemakers (class IV, level

GCPP).

Magnetic resonance imaging

Magnetic resonance imaging has a higher sensitivity

than conventional CT and results in lower inter-rater

variability in the diagnosis of ischemic stroke within the

first hours of stroke onset [54–59] (class I, level A). MRI

is particularly useful to show lesions in the brain stem

or cerebellum, identify lacunar infarcts, and document

vessel occlusion and brain edema [55,57] (class I, level

A). In addition, new MRI techniques can provide

information about tissue viability. Diffusion-weighted

(DWI) and perfusion-weighted (PWI) MRI studies may

inform about the presence of reversibly and irreversibly

damaged ischemic tissues in the hyperacute phase of

stroke [60–66]. DWI may demonstrate deeply ischemic

or infarcted brain tissue within minutes of onset

of symptoms [67]. PWI requires the intravenous

administration of gadolinium and provides information

about brain tissue perfusion at a given time. The most

widely used indicator of brain perfusion is the time-

to-peak, being the time until the intravenous gadolin-

ium bolus reaches brain tissue. This model-independent

measure allows an estimation of the severity of ischemia

in comparison with the non-affected hemisphere in an

objective manner [68]. The absolute volume difference

or ratio of the PWI area and the DWI area (diffusion–

perfusion mismatch) is a useful method to estimate the

presence of ischemic penumbra tissue [69,70]. Not only

the volume of abnormal perfusion but also its degree

predicts the extent of ischemic brain damage [71].

PWI/DWI-mismatch has been evaluated in several

studies as a selection tool for thromboyltic therapy

beyond 3 h [72] and in a recent phase II trial it was

used as a selection tool and surrogate parameter for

thrombolysis within 3–9 h [6]. However, the extent of

DWI/PWI mismatch did not predict outcome after

thrombolysis in an earlier open label study [72].

Magnetic resonance imaging can help identify

occluded intracranial arteries by the loss of the normal

intravascular flow voids [55]. Some sequences, as T2*-

weighted MRI or fluid-attenuated inversion recovery

(FLAIR; hyperintense artery sign), may demonstrate

acute MCA thromboembolism with a higher sensitivity

than CT, but the type of arterial change on MRI does

not predict recanalization, clinical outcome or ICH

after intravenous thrombolysis [73,74].

Intracranial hemorrhage with acute stroke is easily

detectable on MRI using T2*-weighted images [75–77].

MRI can identify intraparenchymal hemorrhage

within the first 6 h after symptom onset as accurately

as CT [77,78]. Susceptibility-weighted T2*-sequences

(gradient echo) can also detect clinically silent paren-

chymal microbleeds, not visible on CT, which may

leave enough local hemosiderin to remain detectable

for months or years after the bleeding. Although

microbleeds are associated with a history of ICH and

prospectively have been shown to pose a 3% risk of

ICH [79], the risk of bleeding after thrombolysis in

patients with microbleeds has not been established.

Whilst some retrospective studies reported an

increased risk of symptomatic hemorrhage after

thrombolysis [80,81], a more recent publication from

one of the same groups failed to document it [82].

MRI is also useful to date the hemorrhagic event

accurately and to detect lesions (as tumors, vascular

malformations or aneurysms) that may underlie the

ICH [83]. To detect these lesions, repeated studies may

be needed after some of the swelling and vasospasm

have subsided.

Subarachnoid hemorrhage can be detected using T2*

[84] and FLAIR [85,86] MR sequences, but at present
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CT remains the imaging method of choice for this

diagnosis (class I, level A).

Arterial dissection is a leading cause of stroke in

young persons [42]. MRI is the initial procedure of

choice [57,87,88], replacing conventional angiography

as the gold standard (class II, level B), because MRI can

show the mural hematoma of the dissected vessel on the

axial images [89] (high signal in the wall). Visualization

of these changes in the vertebral artery is more difficult

than for the larger carotid artery, making diagnosis of

vertebral dissection less reliable. The study can be

completed with MR angiography (MRA) to visualize

occlusion of the artery, pseudoaneurysms or a long

stenotic segment with tapered ends [90,91]. Other

techniques, including US [92,93] or CT angiography

[90,91], may be useful for the non-invasive diagnosis of

arterial dissection.

Cerebral venous thrombosis. Magnetic resonance com-

bined with MRA is the method of choice for the diag-

nosis and follow-up of CVT [44,94,95]. MR is more

sensitive than CT to show parechymal abnormalities

and the presence of thrombosed veins.

In summary, MRI is very helpful in the clinical set-

ting for the management of acute stroke and to guide

decisions regarding thrombolysis [5] (class I, level A). It

is particularly helpful for the study of stroke patients

for whom perfusion CT may be dangerous, such as

those with renal failure or diabetes. However, MRI in

the acute phase of stroke is not widely available at

European hospitals [96]. Other limitations and contra-

indications for the use of MRI are: claustrophobia,

agitation, morbid obesity, the presence of intracranial

ferromagnetic elements, an aneurysm recently clipped

or coiled, otic or cochlear implants, some old prosthetic

heart valves, pacemakers, and some, not all, neurosti-

mulators.

SPECT and PET

Single photon emission computed tomography

(SPECT) and positron emission tomography (PET) are

functional neuroimaging techniques based on the

principles of tracer technology using radiolabeled sub-

stances as systemically administered tracers. In the

setting of stroke SPECT has been used for the evalua-

tion of cerebral perfusion. Earlier perfusion SPECT

studies failed to show any advantage of SPECT over the

structured clinical evaluation (NIH, Canadian, Scan-

dinavian stroke scales) in the prediction of the evolution

of acute stroke [97]. However, using ethyl cysteinate

dimer (ECD) SPECT in the first 6 h after stroke,

Barthel et al. [98] were able to determine which patients

would develop massive MCA-territory necrosis, with

hemispheric herniation. These patients have a high risk

of hemorrhage following thrombolysis and could

potentially be helped by early decompressive hemicra-

niectomy [99]. Complete MCA infarctions were pre-

dicted with significantly higher accuracy with early

SPECT compared with early CT and clinical parame-

ters. The predictive value increased when the findings

on CT, clinical examination and SPECT were consid-

ered [98]. Other studies have found SPECT to add

predictive value to the clinical score on admission

[100–102]. Those studies suggest that a patient with a

normal SPECT study performed within 3 h of stroke

onset, will most likely recover spontaneously and

therefore may not benefit from thrombolysis. A patient

with a dense deficit in the entire MCA distribution has a

high risk of hemorrhage with thrombolysis, and,

depending on age and other factors, should be consid-

ered for decompressive hemicraniectomy. The patients

most likely to benefit from thrombolysis are the ones

with less massive lesions [98,100]. Thus, SPECT is

helpful in the evaluation of acute stroke (class III, level

C). Unfortunately, the need to perform either CT or

MRI in acute stroke renders the performance of SPECT

difficult within the time frame allotted for the evalua-

tion of these patients. SPECT is also helpful in the

evaluation of cerebral perfusion in non-acute cerebro-

vascular disease, for instance in the days after a SAH

[103] (class III, level C).

Positron emission tomography allows to measure a

large variety of physiological variables including the

cerebral blood flow, the cerebral blood volume, the

cerebral glucose metabolism as well as neurotransmit-

ters and neuroreceptors, such as benzodiazepine re-

ceptors with flumazenil, an accurate marker of

neuronal loss [104]. As PET has been considered the

gold standard for these kinds of measurements in hu-

mans, it is also extremely well suited to help identify the

degree of ischemic damage in the brain. However, it

does not allow for the reliable identification of lesions

in the vessels or non-vascular lesions giving rise to the

stroke syndrome. This, coupled with the cost and cur-

rent lack of availability of this technique, renders it less

useful than MRI and CT for most practicing neuro-

logists.

Imaging of the extracranial vessels

Imaging of the extracranial and intracranial vessels will

help identify the underlying mechanism of the stroke

(atherothrombotic, embolic, dissection or other). Non-

invasive imaging methods are increasingly accepted as

replacements of digital substraction angiography

(DSA) in carotid stenosis evaluation prior to endar-

terectomy, in order to avoid the risks of DSA [105]

(class IV, GCPP). US, comprising Doppler sonography

and color-coded duplex sonography, is probably the

Stroke neuroimaging guideline 1275

� 2006 EFNS European Journal of Neurology 13, 1271–1283



most common non-invasive imaging examination per-

formed to aid in the diagnosis of carotid disease. The

peak systolic velocity and the presence of plaque on

grayscale and/or color Doppler/Duplex US images are

the main parameters that should be used when diag-

nosing and grading internal carotid artery (ICA)

stenosis [106]. The examination may be limited by the

presence of extensive plaque calcifications, vessel

tortuosity and in patients with tandem lesions. In

addition, Doppler US is both technician- and equip-

ment-dependent and all sonographers should be able to

demonstrate that they have validated their testing pro-

cedures.

Magnetic resonance angiography using time-of-flight

angiography (TOF) and contrast-enhanced MRA

(CEMRA) are powerful means to assess vascular

pathology. Either technique provides specific informa-

tion: whilst TOF visualizes changes of flow in the

arteries or veins depending on imaging parameters,

CEMRA visualizes the vascular lumen. MRA and US

have yielded comparable findings. Two meta-analysis

[107,108] and several reviews [109,110] have compared

the diagnostic value of Doppler US, MRA, and con-

ventional DSA for the diagnosis of carotid artery ste-

nosis. The meta-analysis published by Blakeley et al.

[107] in 1995 concluded that Doppler US and MRA

had similar diagnostic performance in predicting caro-

tid artery occlusion and >70% stenosis. In the sys-

tematic review performed by Nederkoorn et al. [109]

for the diagnosis of 70–99% stenosis, MRA had a

pooled sensitivity of 95% and a pooled specificity of

90%, and US 86% and 87%, respectively. For recog-

nizing occlusion, MRA had a sensitivity of 98% and a

specificity of 100%, and DUS had a sensitivity of 96%

and a specificity of 100%. Thus, CEMRA is slightly

more precise than US and appears to achieve a higher

sensitivity for the detection of stenosis, and to allow

improved differentiation of tight stenosis from occlu-

sion. However, the difference is small and other factors

such as availability and quality of US performance may

render one procedure more useful than the other (class

II, level B).

Computed tomography angiography, a contrast-

dependent technique, has been compared with DSA for

the detection and quantification of carotid stenosis and

occlusions [111–116]. A recent systematic review con-

cludes that this technique has demonstrated a good

sensitivity and specificity for occlusion (97%), but the

pooled sensitivity and specificity for detection of a 70–

99% stenosis by CTA were 85% and 93% respectively

[115] (class II, level B).

Digital substraction angiography is the reference

method to determine the degree of carotid stenosis be-

cause endarterectomy trials for symptomatic [117–119]

and asymptomatic [120] patients were performed using

this method. However angiography carries the risk of

stroke and death [105,121] and many centers are not

using DSA prior to carotid endarterectomy [106,122],

particularly when non-invasive methods are concordant

(class IV, GCPP). When non-invasive methods are

inconclusive or there is a discrepancy between them,

DSA is necessary.

Imaging of the intracranial vessels

Transcranial Doppler (TCD) is a non-invasive ultra-

sonographic procedure that measures local blood flow

velocity and direction in the proximal portions of large

intracranial arteries [123,124]. It is useful for screening

for intracranial stenosis [125,126] and occlusion [127] in

patients with cerebrovascular disease (class II, level B).

In children with sickle cell disease, detection of

asymptomatic intracerebral stenoses using TCD allows

selection of a group at high risk of future stroke, who

benefit from exchange transfusion [128] (class I, level

A). It is also useful for the detection and monitoring of

intracranial artery vasospasm after SAH, particularly in

the MCA [129] (class I, level A). TCD can be used to

monitor recanalization during thrombolysis in acute

MCA occlusions [130] (class II, level B). There is

increasing interest in its therapeutic use. In vitro studies

demonstrate it has an additive effect on clot lysis when

used with recombinant tissue plasminogen activator

(rtPA), and clinical studies have suggested that con-

tinuous TCD monitoring in patients with acute MCA

occlusion treated with intravenous thrombolysis may

improve both early recanalization and clinical outcome

[131,132]. TCD allows for the documentation of a right-

to-left shunt in patients with ischemic stroke (class II,

level A). TCD discloses a shower of air bubbles in the

MCA after the intravenous injection of saline mixed

with air bubbles [133–135].

Even in asymptomatic patients, TCD is the only

imaging technique that allows detection of circulating

emboli (class II, level A). These appear as short dur-

ation high-intensity signals, because they reflect and

backscatter more ultrasound than the surrounding red

blood cells. Studies have shown that asymptomatic

embolization is common in acute stroke, particularly in

patients with carotid artery disease [136,137]. In this

group the presence of embolic signals has been shown

to predict the combined stroke and transient ischemic

attack (TIA) risk [138–142] and more recently the risk

of stroke alone [143] (class II, level A). Embolic signals

have been also used as surrogate markers to evaluate

antiplatelet agents in both single-center studies [144]

and recently in the multicenter international Clopi-

dogrel and Aspirin for Reduction of Emboli in
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Symptomatic Carotid Stenosis trial [145]. Embolic sig-

nal monitoring is used to monitor embolization fol-

lowing carotid endarterectomy; the presence of frequent

embolic signals in this setting predicts early postoper-

ative stroke [146] and can be reduced by more aggres-

sive antiplatelet treatment, including dextran [147] and

clopidogrel [148]. TCD can also be used to determine

cerebrovascular reserve by determining the extent to

which MCA flow velocity can increase in response to

the vasodilator carbon dioxide or acetazolamide.

Reserve is reduced in a proportion of patients with

carotid occlusion and tight stenosis, and impaired

reserve predicts recurrent TIA and stroke risk partic-

ularly in the group with carotid occlusion [149,150]

(class III, level B).

Transcranial Doppler examination cannot be per-

formed in about 10–15% of patients, particularly older

women, because they lack a transtemporal window due

to the thickness of the skull [151]. The use of intra-

venous echo contrast agents may improve detection of

flow velocities in patients with limited transtemporal

window [152]. TCD velocities may be altered in patients

with cardiac pump failure (low velocities) or anemia

(increased velocities).

Magnetic resonance angiography can identify intra-

cranial steno-occlusive lesions mainly in the proximal

segments. Compared with DSA, the diagnostic accu-

racy of MRA for the identification of the proximal in-

tracranial arterial stenosis has a high sensitivity and

specificity (superior to 80%) [153–155] (class II, level

B). CT angiography is another useful technique but

with less sensitivity and specificity than MRI, because it

does not allow for assessment of stenosis in the cav-

ernous portion of the internal carotid or in arteries with

circumferential wall calcification [154,156].

Magnetic resonance and CT angiography can be used

to show large aneurysms (class II, level B), but these

techniques fail to identify aneurysm of less than 5 mm in

diameter, those located in the intracranial carotid

artery, and cannot clearly establish the critical relation-

ship of the neck of the aneurysm(s) with arterial bran-

ches [157–159]. DSA is needed to demonstrate small

aneurysms and before surgery or endovascular treat-

ment (class I, level A). MR and CT angiography have

been used for screening individuals with a history of

intracranial aneurysm or SAH in first-degree relatives

[59,160]. Despite relatively limited sensitivity, CT angi-

ography is indicated for suspected or confirmed aneu-

rysms that demand further verification of their presence,

geometry, or relationship to parent artery branches and

osseous anatomic landmarks. Low-volume high-density

contrast media have substantially increased the ability

of CT angiography to depict small aneurysms, small

branches, and collateral vessels [161].

Recommendations

Imaging of the brain

Non-contrast CT scan is the established imaging pro-

cedure for the initial evaluation of patients with stroke

to document or exclude ICH and SAH (class II, level

C). However, CT use has been consecrated more by

availability than by randomized studies comparing its

effectiveness with MRI. Either CT or MRI should be

used for the definition of stroke type and treatment of

stroke (class I, level A).

Given the controversial nature of data on early CT

infarct signs involving more than one-third of the ter-

ritory of the MCA as predictors of the outcome of IV

rtPA treatment, the presence of such signs cannot be

construed as an absolute contraindication to throm-

bolysis in the first 3 h after stroke (class IV, level

GCPP). Perfusion CT is helpful when MRI is not

available and for the study of stroke patients for whom

MRI is contraindicated (class IV, level GCPP). MRI

has a higher sensitivity than conventional CT for the

documentation of infarction within the first hours of

stroke onset, lesions in the posterior fossa, identification

of small lesions, and documentation of vessel occlusion

and brain edema (class I, level A). In conjunction with

MRI and MRA, perfusion and diffusion MR are very

helpful for the evaluation of patients with acute

ischemic stroke (class I, level A). Perfusion and diffu-

sion MR are helpful to select patients for intravenous

thrombolysis beyond 3 h (class II, level B). MRI with

MRA is the method recommended for the diagnosis

and follow-up of arterial dissection (class II, level B).

Single photon emission computed tomography is

helpful to predict the malignant course of brain swelling

with large hemispheric infarctions (class III, level C).

SPECT is also helpful in the evaluation of cerebral

perfusion in non-acute cerebrovascular disease, for in-

stance in the days after a SAH (class III, level C).

Detection of hemorrhagic stroke

In stroke, MRI can detect acute and chronic ICH (class

I, level A). Although the detection of SAH is possible

with MRI, currently CT scan is the diagnostic proce-

dure of choice (class I, level A).

Imaging of extracranial vessels

Ultrasonography is the non-invasive screening tech-

nique indicated for the study of vessels involved in

causing symptoms of carotid stenosis (class IV, GCPP).

MR angiography has slightly higher sensitivity and

specificity than US to determine carotid stenosis and
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occlusion, but other factors, such as availability, may

render one procedure more useful than the other (class

II, level B). CTA has a sensitivity and specificity similar

to MR for carotid occlusion and similar to US for the

detection of severe stenosis (class II, level B). DSA is

generally recommended for grading carotid stenosis

prior to endarterectomy (class I, level A), but when

there is concordance of non-invasive methods cerebral

arteriography may not be necessary (class IV, level

GCPP).

Imaging of intracraneal vessels

Transcranial Doppler is very useful for assessing

stroke risk of children aged 2–16 years with sickle cell

disease (class I, level A), detection and monitoring of

vasospasm after SAH (class I, level A), diagnosis of

intracranial steno-occlusive disease (class II, level B),

diagnosis of right-to-left shunts (class II, level A), and

for monitoring arterial reperfusion after thrombolysis

of acute MCA occlusions (class II, level B). TCD can

detect cerebral emboli and impaired cerebral hemo-

dynamics. The presence of embolic signals with

carotid stenosis predicts early recurrent stroke risk

(class II, level A). The detection of impaired cerebral

hemodynamics in carotid occlusion may identify a

group at high risk of recurrent stroke (class III, level

B).

Magnetic resonance angiography and CT angiog-

raphy are very useful for the diagnosis of intracranial

stenosis and cerebral aneurysms >5 mm (class II,

level B). MRA is the recommended technique for

screening cerebral aneurysms in individuals with a

history of aneurysms or SAH in a first-degree relative

(class II, level B). DSA is the recommended technique

for the diagnosis of cerebral aneurysm as the cause of

SAH (class I, level A). MRI with MRA is recom-

mended for the diagnosis and follow-up of CVT

(class II, level B). Alternatively, CT venography is

accurate and can be used for the same purpose (class

III, level C).
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